
Function Objects and the Comparator Interface
Merge Sort

Fork/Join Framework

Checkout ForkJoinIntro project from SVN

}  Merge sort recap
}  Introduction to function objects, Comparator
}  Parallelism with the Fork/Join Framework

}  Basic recursive idea:
◦  If list is length 0 or 1, then it’s already sorted
◦  Otherwise:
�  Divide list into two halves
�  Recursively sort the two halves
�  Merge the sorted halves back together

If list is length 0 or 1,  
then it’s already sorted

}  Otherwise:
◦  Divide list into two halves
◦  Recursively sort the two halves
◦  Merge the sorted halves back together

Merge n/4
items

Merge n/4
items

Merge n/4
items

Merge n/4
items

Merge n items

Merge n/2 items Merge n/2 items

Merge 2
items

Merge 2
items

Merge 2
items

Merge 2
items etc

etc

n items merged

n items merged

n items
merged

n items
merged

etc

Another way of creating
reusable code

}  Java libraries provide efficient sorting
algorithms
◦  Arrays.sort(…) and Collections.sort(…)

}  But suppose we want to sort by something
other than the “natural order” given by
compareTo()

}  Function objects to the rescue!

}  Objects defined to just “wrap up” functions so
we can pass them to other (library) code

}  For sorting we can create a function object
that implements Comparator

}  Let’s try it!

Function objects and recursion
meet multicore computers

Some slides and examples derived from Dan Grossman’s materials at 
http://www.cs.washington.edu/homes/djg/teachingMaterials/

}  Sequential programming: one thing happens
at a time
◦  No longer the case!

}  Parallel programming: multiple things happen
simultaneously

}  Major challenges and opportunities
◦  Programming
◦  Algorithms
◦  Data We’ll just scratch the

surface in CSSE 220

}  Parallel code is often much harder to write
than sequential

}  Free ride from the CPEs
◦  From 1980-2005 performance of same sequential

code doubled every two years
}  No one knows how to continue this!
◦  Speed up clock rate?
�  Two much heat
�  Memory can’t keep up
◦  But the “wires” keep getting smaller, so…
�  Put multiple processors on same chip!

}  Run multiple totally different programs
◦  Operating system handles this
◦  Uses time-slicing plus multiple cores

}  Multiple things at once in one program
◦  We’ll play with this today!

}  Parallelism: Use more resources for a faster
answer

}  Concurrency: Correctly and efficiently allow
simultaneous access to data

}  CS1 idea: Writing a program is like writing a
recipe for a cook

}  Parallelism: slicing lots of potatoes

}  Concurrency: sharing stove burners

}  Example: Sum elements of a large array
}  Use divide-and-conquer!
◦  Parallelism for the recursive calls

+ + + + + + + +
+ + + +

+ +
+

}  Specifically for recursive, divide-and-
conquer parallelism
◦  Is in Java 7 standard libraries, but available in Java

6 as a downloaded .jar file

}  Fork: splitting off some code that can run in
parallel with the original code
◦  Like handing a potato to a helper

}  Join: waiting for some forked code to finish
◦  Like waiting for the potato slices from the helper

}  Set a sequential threshold
◦  A size below which we just “slice ‘em ourselves”

}  Library needs to “warm up”
◦  Java Virtual Machine optimizes as it runs

}  Wait until your computer has more
processors J

}  Here there be dragons!
◦  Memory-hierarchy issues
◦  Race conditions
◦  We’re ignoring lots of gory details!

}  Find a partner for HW14
}  You’ll:
◦  Write some code
◦  Run some experiments
◦  Write a lab report

}  This is the third year we’ve tried this:
◦  Enjoy playing with the tools and ideas
◦  Ask questions!

Follow the written homework
instructions carefully. There’s a lot

more independent learning here
than we’ve been doing so far.

